Retrofit Turnkey Solution

Consultancy → Engineering → Purchasing → Construction

Clear Responsibility

Open Price of 3rd Party

High Project Management Efficiency

Dynamic Efficiency nprovement Suggestion

Consultancy & 3D **Scanning Survey**

· Feasibility Study Report Concept Report

Equipment Selection &

- Purchase · Maker authorizations 30+
- · Multiple makers selection
- · Open price of equipment

Design & Class Review

· High accuracy, ensure minimum onsite modification · Fast drawing delivery, design on direct 3D modeling Average 13 years design experience

泴 **Material & Fabrication**

· Design team in charge of quality control of material and fabricatio ensure minimum onsite modification

Commissioning & After-sales Service

· Several yard's representative, such as Beihai, SHG, CUD, ZTHI, Zhoushan Longshan, etc

• 200+ technicians

Installation,

• Maker Authorizations 30+

Supervision & **Electrical Retrofit**

 Supervisors 30+ Electric modification:

MSBD/AMS/GPS/VRC and other peripheral systems modify, such as Hyundai, JRCS, BEMAC, Taiyo, TERASAKI, Kongsberg, etc.

Sea Trial & Training

- Seaman book 50+ Onboard Sea trial or measurement
- · Regular training
- Customized training

About SmartEco

Abundant Retrofit Engineering Experience

Established in 2017

Retrofit & New Projects 1.000+

Cooperated Manufacturers 30+

Design Engineers 30+

Self-Own Multi-Team Cooperation

- Green decarbonization retrofit team for feasibility Study & Design.
- New energy R&D team for new technology evolution
- Technical & engineering team for installation & electrical modification

Design Engineer Experience Average 13.8Y

Work Experience Ratio

WinKong Marine Engineering Co., Ltd.

Platform website: www.marinsmart.pro Company website: www.winkong.net

Tel: +86 0532 83838072 E-mail: newmkt@winkong.net

SMARTECO

Green Decarbonization Solutions of Full Life Cycle

- Package with Ship Energy Efficiency Management for Data Analysis
- Power System Optimization Solutions
- Propulsion System Optimization Solutions
- Hydrodynamic Optimization Solutions
- Alternative Fuel/Energy Supply System Retrofit

Green and Low-Carbon Solutions, Empower Clean Shipping

WinKong Marine Engineering Co., Ltd.

Green Decarbonization Solutions of Full Life Cycle

Based on Energy Efficiency Management (EEM) System

Advantages of EEM

- Approved by class.
- · Data acquired automatically, accurate and credible.
- Connected automatically with DNV OVD for verification, generate DCS and MRV reports, providing data support for owner's EU ETS and FuelEU.
- · Continuous energy efficiency optimization suggestions.

Provide Multiple Engineering Solutions

Power System Optimization

- Shaft Generator Retrofit
- AMP-Alternative Maritime Power (Shore Power System)
- VFDs Modification
- LED Retrofit
- Electric Power Quality Optimization

Propulsion System Optimization

- Rotor Sailor Retrofit
- ALS(Air lubrication system) Retrofit
- TCCO(Turbo charger cut-out) Modification

Emission Reduction

- OCCS(Onboard carbon capture system) Retrofit
- EGCS Retrofit
- SCR Retrofit
- Ship GHG Comprehensive Solutions

Hydrodynamic Optimization

- High Efficiency Propeller Retrofit/Modification
- PSV(Pre-shrouded vanes) Retrofit
- HVAF(Hub vortex absorbed fins) Retrofit
- PSS Retrofit
- WID Retrofit
- FR Retrofit

Alternative Fuel/Energy Supply System Retrofit

- · Methanol Low-flashiont Fuel Supply System (LFSS) Design
- LNG Fuel Gas Supply System (FGSS) Design
- Ammonia Fuel Gas Systems (AFSS) Design

Shaft Generator Retrofit Case

The shaft generator retrofit plan could allow vessel to only run Main Engine and Shaft Generator without running D/G during seagoing, which can improve the energy saving by 3%~8% and upgrade the SEEMP level subject to different vessel types.

3D Modeling Design

Vessel Type

Main Engine

230K Bulk carrier	Class: ABS			
MAN B&W 6S80MC-C, MCR 23,280kW				

Shaft Generator 1,400kW				
Cont	Before	After		
Main engi	6,900kW	8,230kW		
M/E S	174.2g/kWh	172.3g/kWh		
M/E daily fuel	28.8t	34.0t		
Generato	1,200kW	0kW		
Generato	242g/kWh	0g/kWh		
Daily fuel consump	7.0t	Ot		
Daily fuel consump	35.8t	34.0t		
After retrofit Dai	1.78t			
Savings on daily fuel cos	ts @550 USD/t LSHFO	979USD		
Save maintenand	ce cost @USD/d	145.5USD		
Sailing days per year 240				
Annual fuel savings 427.2t				
Annual cos	269,880USD			
Fuel sav	5.0%	6		

Installation Info

- Install between main engine and intermediate bearing.
- After calculating the strength requirement of the intermediate bearing, the strength of the intermediate bearing bush changed from 302kN to 478kN. Load test of shafting.
- period was 25 days (including 5 days of commissioning), and the time in dock was 9 days (with energy saving appendages retrofitting).
- 5 days of peripheral electrification (simultaneous).

- The installation was carried out in a Chinese shipyard, the installation

Hydrodynamic, AMP, VFDs Retrofit Case

Advantages: Seconomic Practicability High Energy-Saving Efficiency Compatibility&Adaptability Fechnical Maturity

Cases

PSV(Pre-shrouded Vanes)

Electrical cabinet installation

VFDs - Modification

Installation type:

· Container unit type · Modified original room New AMP room

Hydrodynamic Optimization

PBCF(Propeller Boss Cap Fin)

General Information					
Туре	DWT Main Engine		M/E MCR		
Bulk Carrier	85,000	B&W 6S60ME	9,660kW x 89.0 rpm		
VED D (St O L St					

saving

Bulk Carrier		65,000		Davy 6360IVIE		9,000kW X 09.0 Ipili		
VFDs Retrofit Selection						Equipment		
Equipment	Power(kW)	Quantity(ea)	Modification Plan			Item	Q'ty	
in analing and	1) Add VFD + control panel 1set 2) Add Temp. sensor 3pcs -Main cooling sea water pump outle			VFD + Control Panel	1set			
in cooling sea water pump	55	1+1(standby)	-before Sea Water Overboard valve -M/E Cool. F.W. System outlet 3) Add outlet Press. Sensor 1pc	>>	Temp. Sensor	3pcs		
E cooling fresh vater pump riven by G/E)	/	1+1(standby)	,			Press. Sensor	1pc	
/E fresh water	18.5	1+1(standby)				Junction Box	1set	

WINKONG

